switching function - definição. O que é switching function. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é switching function - definição

FUNCTION WITH DOMAIN {0,1}^K FOR SOME K AND WITH RANGE {0,1}
Boolean valued function; Finitary boolean function; Boolean functions; Boolean Function; Switching function; Switching Function; Vectorial Boolean function
  • A [[binary decision diagram]] and [[truth table]] of a ternary Boolean function
  • The sixteen binary Boolean functions
  • A Boolean function represented as a [[Boolean circuit]]

Boolean function         
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic.
Switching barriers         
ECONOMIC & PSYCHOLOGICAL COSTS OF SWITCHING FROM ONE ALTERNATIVE TO ANOTHER
Switching costs; Switching cost
Switching costs or switching barriers are terms used in microeconomics, strategic management, and marketing. They may be defined as the disadvantages or expenses consumers feel they experience, along with the economic and psychological costs of switching from one alternative to another.
Immunoglobulin class switching         
  • Mechanism of class-switch recombination that allows isotype switching in activated B cells.
SWITCHING OF ACTIVATED B CELLS FROM IGM BIOSYNTHESIS TO BIOSYNTHESIS OF OTHER ISOTYPES OF IMMUNOGLOBULIN
Class switching; Antibody class switching; Isotype switching; Class switch recombination; Class switch; Ig class switching; Immunoglobulin switch region
Immunoglobulin class switching, also known as isotype switching, isotypic commutation or class-switch recombination (CSR), is a biological mechanism that changes a B cell's production of immunoglobulin from one type to another, such as from the isotype IgM to the isotype IgG. During this process, the constant-region portion of the antibody heavy chain is changed, but the variable region of the heavy chain stays the same (the terms variable and constant refer to changes or lack thereof between antibodies that target different epitopes).

Wikipédia

Boolean function

In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory.

A Boolean function takes the form f : { 0 , 1 } k { 0 , 1 } {\displaystyle f:\{0,1\}^{k}\to \{0,1\}} , where { 0 , 1 } {\displaystyle \{0,1\}} is known as the Boolean domain and k {\displaystyle k} is a non-negative integer called the arity of the function. In the case where k = 0 {\displaystyle k=0} , the function is a constant element of { 0 , 1 } {\displaystyle \{0,1\}} . A Boolean function with multiple outputs, f : { 0 , 1 } k { 0 , 1 } m {\displaystyle f:\{0,1\}^{k}\to \{0,1\}^{m}} with m > 1 {\displaystyle m>1} is a vectorial or vector-valued Boolean function (an S-box in symmetric cryptography).

There are 2 2 k {\displaystyle 2^{2^{k}}} different Boolean functions with k {\displaystyle k} arguments; equal to the number of different truth tables with 2 k {\displaystyle 2^{k}} entries.

Every k {\displaystyle k} -ary Boolean function can be expressed as a propositional formula in k {\displaystyle k} variables x 1 , . . . , x k {\displaystyle x_{1},...,x_{k}} , and two propositional formulas are logically equivalent if and only if they express the same Boolean function.